CHAPTER V

NUMERICAL EXAMPLES

NUMERICAL EXAMPLES

In this chapter we will give numerical examples of each type of computation i.e. loxodromic and orthodromic route computations, traverse tables, plotting and computing of the geographical position. An example of position computation with the HO249 tables is included.

The instrumental errors, which are the chronometer error \boldsymbol{c}, the sextant error \boldsymbol{i}, the height of the boat in order to find the "dip" correction are given, because they are specific to each instrument and ship

The Nories tables

The computations are performed by the means of "Nories tables". The ability to use the tables is imperative in order remain independent from electronic devices. Pocket calculators give the same result, possible differences are due to rounding. The Nories tables remain forever valid and are available at any ship-chandler.

Logarithms in Nories tables

In Nories tables logarithms are given the following:
$\log 0,5=\mathbf{1}, 69897$ instead of $\log 0,5=-0,30103$, where $\mathbf{1}, 69897=-1+1-0,30103$
this kind of shape is meant to eliminate subtractions on decimals.

Example:

The Nautical Almanac

In the nautical almanac the coordinates δ, GHA or SHA of sun, moon, planets and stars are tabulated on a daily base. This book is only valid for one year and is sold by any shipchandler.

The HO249 tables

This almanac gives the coordinates of the stars including their hc and Zn in function of the latitude. These tables remain forever valid at the exception of yearly correction page. The tables are freely available and downloadable on the site of the National Imagery Agency (NIMA).

PROBLEM 1

On the first of October 2001 a boat is steering a course of 212° at a speed of 5 knots. Her estimated position at 9 am deck time is $35^{\circ} 19^{\prime} \mathrm{N} ; 15^{\circ} 17,2 \mathrm{~W}$.

For measurements the sextant was hold by a man of $1,7 \mathrm{~m}$ tall and 32 years old on a deck at $1,3 \mathrm{~m}$ above the waterline. The chronometer is running 5 s too fast. The deck time is directly derived from the chronometer time. Regrettably the sextant has an index error of +2 minutes.

The following altitudes of the sun were noted at the respective deck times:

O9h02m06s	$34^{\circ} 35,0^{\prime}$
$10 h 03 m 15 s$	$43^{\circ} 42,3^{\prime}$
11 hoom00s	$49^{\circ} 27,6^{\prime}$
Meridional passage	$51^{\circ} 20,8^{\prime}$

Determine the position of the boat at meridional passage using the Nautical Almanac, the Nories tables. Use your pencil, parallel rulers and a pair of compasses. Don't use your pocket calculator please, except for verification.

Solution :

1° summarise the data
2° compute the track with the traverse tables from Nories.
3° determine the basic parameters LHA and δ for each position
4° compute heights, azimuths and intercepts of each position
5° Plot each position line from the final position.
6° Measure $\Delta 1$ and Dep on the plot and convert Dep to $\Delta \mathrm{g}$.
7° Apply Δl and Δg on the final position in order to obtain the real position.

Summarised data

DATE	Time Zone	Dip	Rv	speed	c	i	$\mathbf{l}_{\mathbf{1}}$	$\mathbf{g}_{\mathbf{1}}$
$01 / 10 / 2001$	GMT- 1	3 m	$180^{\circ}+32^{\circ}=212^{\circ}$	5 kn	-5 s	$+2^{\prime}$	$35^{\circ} 19,0^{\prime} \mathrm{N}$	$15^{\circ} 17,2^{\prime} \mathrm{W}$

Observation at Local Time	Measured height
09 h 02 m 06 s	$34^{\circ} 35,0^{\prime}$
10 h 03 m 15 s	$43^{\circ} 42,3^{\prime}$
11 h 00 m 00 s	$49^{\circ} 27,6^{\prime}$
Meridional pass. $=+/-12 \mathrm{~h} 00$	$51^{\circ} 20,8^{\prime}$

Local Time	UTC	UTC + correction (-5s)
09 h 02 m 06 s	10 h 02 m 06 s	10 h 02 m 01 s
10 h 03 m 15 s	11 h 03 m 15 s	11 h 03 m 10 s
11 h 00 m 00 s	12 h 00 m 00 s	11 h 59 m 55 s

Comments

According to the initial position the navigation zone is the Azores archipelago.
Its time zone is GMT-1. The time zones are tabulated in the Nautical Almanac.
We use the local time as deck time, this avoids time lags. For computations however we need to convert the deck time to UTC. and also to correct the chronometer error. The Dip is the sextant altitude i.e. $1,7+1,3=3 \mathrm{~m}$.

Entrance in table		
Distance	$\mathbf{R v}$	$\mathbf{l m}$
5 M	212°	35°

Results from table		
$\Delta \mathbf{l}$	Dep	$\Delta \mathbf{g}$
$4,2^{\prime}(-)$	$2,6^{\prime}$	$3,2^{\prime}(+)$

Position	Latitude	Longitude	At Deck Time
P1	$35^{\circ} 19,0^{\prime} \mathrm{N}$	$15^{\circ} 17,2^{\prime} \mathrm{W}$	09 h 00
P2	$35^{\circ} 14,8^{\prime} \mathrm{N}$	$15^{\circ} 20,4^{\prime} \mathrm{W}$	10 h 00
P3 $^{\circ}$	$35^{\circ} 10,6^{\prime} \mathrm{N}$	$15^{\circ} 23,7^{\prime} \mathrm{W}$	11 h 00
P4	$35^{\circ} 06,3^{\prime} \mathrm{N}$	$15^{\circ} 26,9^{\prime} \mathrm{W}$	12 h 00

Comments:

As our speed is 5 kn the distance covered each hour is 5 miles. We use the traverse tables because our distances are very short. We consider that each distance is then the hypotenuse of the plane right angled triangle with sides Dep and $\Delta \mathrm{l}$.
The traverse tables are nothing else than the tabulation of the formulas for right angled triangles:
$\Delta \mathrm{l} \quad=\quad($ dist $\times \cos R \mathrm{v}) \quad(\Delta \mathrm{l}$ is a distance and an angle $)$
Dep $=($ dist $x \sin R v) \quad$ (Dep is a distance but not an angle)
$\Delta \mathrm{g}=\mathrm{Dep} / \cos \operatorname{lm} \quad(\Delta \mathrm{g}$ is not a distance but an angle, lm is the main latitude $)$

We see on the figure that the latitude is decreasing and the longitude increasing.

Determine the basic parameters

GHA \odot	Increments	GHA \odot	UTC
$332^{\circ} 35,2^{\prime}$	$30,3^{\prime}$	$333^{\circ} 05,5^{\prime}$	10 h 02 m 01 s
$347^{\circ} 35,4^{\prime}$	$47,5^{\prime}$	$348^{\circ} 22,9^{\prime}$	11 h 03 m 10 s
$347^{\circ} 35,4^{\prime}$	$14^{\circ} 58,8^{\prime}$	$362^{\circ} 34,2^{\prime}$	11 h 59 m 55 s

$\mathbf{G H A} \odot$	$\mathbf{g}(\mathbf{W})=-$	LHA	UTC
$333^{\circ} 05,5^{\prime}$	$15^{\circ} 17,2^{\prime}$	$317^{\circ} 48,3^{\prime}$	10 h 02 m 01 s
$348^{\circ} 22,9^{\prime}$	$15^{\circ} 20,4^{\prime}$	$333^{\circ} 02,5^{\prime}$	11 h 03 m 10 s
$362^{\circ} 34,2^{\prime}$	$15^{\circ} 23,7^{\prime}$	$347^{\circ} 10,5^{\prime}$	11 h 59 m 55 s

δ	Increment d=1,0	δ	UTC
$3^{\circ} 17,4^{\prime} \mathrm{S}$	$0,0^{\prime}$	$3^{\circ} 17,4^{\prime} \mathrm{S}$	10 h 02 m 01 s
$3^{\circ} 18,3^{\prime} \mathrm{S}$	$0,1^{\prime}$	$3^{\circ} 18,4^{\prime} \mathrm{S}$	11 h 03 m 10 s
$3^{\circ} 18,3^{\prime} \mathrm{S}$	$1,0^{\prime}$	$3^{\circ} 19,3^{\prime} \mathrm{S}$	11 h 59 m 55 s

The basic parameters

\mathbf{l}	δ	LHA
$35^{\circ} 19,0^{\prime} \mathrm{N}$	$3^{\circ} 17,4^{\prime} \mathrm{S}$	$317^{\circ} 48,5^{\prime}$
$35^{\circ} 14,8^{\prime} \mathrm{N}$	$3^{\circ} 18,4^{\prime} \mathrm{S}$	$333^{\circ} 02,5^{\prime}$
$35^{\circ} 10,6^{\prime} \mathrm{N}$	$3^{\circ} 19,3^{\prime} \mathrm{S}$	$347^{\circ} 10,8^{\prime}$

Comments

The values GHA and δ are found in the nautical almanac.
In daily pages section we find the values GHA, δ for each entire hour. The d correction is found on the bottom of each daily page.

The yellow pages of the Nautical Almanac give the increments and corrections we have to add to the entire hour value.

Ex.: $\quad G H A$ at 11 h 00 m 00 s is $347^{\circ} 35,4^{\prime}$; the increment for 59 min 05 s is $14^{\circ} 58,8^{\prime}$
δ at 11 h 00 m 00 s is $3^{\circ} 18,3^{\prime} \mathrm{S}$ the increment for 59 min and $\mathrm{d}=1,0$ is $1,0^{\prime}$.
Note that δ is slow value that is incremented per minute and GHA a fast value that is incremented per second. Remember increments always have a positive sign and are always added.
The LHA $=G H A+g$, accordingly to the sign rule g is negative because it is west.

Computation scheme for $\mathrm{Hc}, \mathrm{Az}, \mathrm{Hv}$ and $\Delta \mathrm{H}$

The used formulas are the haversine formula in logarithmic shape and the ABC formulas. θ is only a auxiliary variable.

A shaded element is the algebraic sum of the elements above, except for element (*) All values are found in Nories tables.

$\log \cos \quad$ l	
$\log \cos \delta$	
\log hav LHA	
\log hav θ	

l	
δ	
$1-\delta$	
hav $(1-\delta) \quad(*)$	

hav θ	
hav(l- $\delta)$	
hav $\left(90^{\circ}-\mathrm{h}\right)=$ hav ζ	

hc	$90^{\circ}-\zeta$	

\mathbf{A}	
\mathbf{B}	
\mathbf{C}	
$\mathbf{Z n}$	

hm	
\mathbf{i}	
dip	
\mathbf{n}	
hv	

$\Delta \mathbf{h}$	hc-hm	

All you have to do is to look up the values in Nories tables and eventually perform an interpolation. Then add them up

First Position

$\log \cos \quad 35^{\circ} 19,00^{\prime}$	$\underline{\mathbf{1}}, 91167$
$\log \cos \quad 3^{\circ} 17,40^{\prime}$	$\underline{\mathbf{1}}, 99928$
\log hav $317^{\circ} 48,30^{\prime}$	$\underline{\mathbf{1}}, 11250$
\log hav θ	$\underline{\mathbf{1}, 02345}$

l	$35^{\circ} 19,0^{\prime}$
δ	$03^{\circ} 17,4^{\prime}$
$1-\delta$	$38^{\circ} 36,4^{\prime}$
hav $(1-\delta)$	0,10928

hav θ	0,10555
hav $(1-\delta)$	0,10928
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,21483

hc	$90^{\circ}-55^{\circ} 13,6^{\prime}$	$34^{\circ} 46,4^{\prime}$

\mathbf{A}	$0,78 \mathrm{~S}$	
\mathbf{B}	$0,08 \mathrm{~S}$	
\mathbf{C}	$0,86 \mathrm{~S}$	
$\mathbf{Z n}$	$54,2^{\circ} \mathrm{S} \mathrm{E}$	E because LHA $180<$ LHA <360

$\mathbf{h m}$	$34^{\circ} 35,0^{\prime}$
\mathbf{i}	$2,0^{\prime}$
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$14,6^{\prime}$
$\mathbf{h v}$	$34^{\circ} 48,5^{\prime}$

$\Delta \mathbf{h}$	hc-hm	$34^{\circ} 46,4-34^{\circ} 48,5^{\prime}=-2,1^{\prime}$ (to)

Second Position

interpolation					
log cos $35^{\circ} 14,8{ }^{\prime}$	1,91205	1	Δ	Log cos 1	Δ
$\log \cos \quad 3^{\circ} 18,4^{\prime}$	4,99928	35 ${ }^{\circ} 14,0$ '		4,91212	
log hav $333^{\circ} 02,5^{\prime}$	2,73505	35 ${ }^{\circ} 14,8$	80	1,91205	7
\log hav θ	2,64638	35 ${ }^{\circ} 15,0$	100	1,91203	9

l	$35^{\circ} 14,8^{\prime}$
δ	$03^{\circ} 18,4^{\prime}$
$1-\delta$	$38^{\circ} 33,2^{\prime}$
hav $(1-\delta)$	0,10898

hav θ	0,04430
hav $(1-\delta)$	0,10899
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,15329

hc	$90^{\circ}-46^{\circ} 05,8^{\prime}$	$43^{\circ} 54,2^{\prime}$

A	1,39 S		hm	$43^{\circ} 42,3^{\prime}$
B	0,13 S		i	2,0'
C	1,52 S		dip	-3, ${ }^{\prime}$
Zn	38,8 SE	E because LHA 180<LHA<360	n	15,2'

$\Delta \mathbf{h}$	hc-hm	$43^{\circ} 54,2-43^{\circ} 56,4^{\prime}=-2,2^{\prime}$ (to)

Third Position

interpolation					
log $\cos 35^{\circ} 10,6^{\prime}$	1,91243	1	Δ	$\log \cos 1$	Δ
$\log \cos \quad 3^{\circ} 19,3^{\prime}$	1,99927	35º $10,{ }^{\prime}$		4,91248	
log hav $347^{\circ} 10,5^{\prime}$	z,09599	35 ${ }^{\circ} 10,6$	60	1,91243	5
\log hav θ	2,00769	$35^{\circ} 11,0$	100	1,91239	9

l	$35^{\circ} 10,6^{\prime}$
δ	$03^{\circ} 19,3^{\prime}$
$1-\delta$	$38^{\circ} 29,9^{\prime}$
hav $(1-\delta)$	0,10869

hav θ	0,01018
hav(l- $\delta)$	0,10869
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,11887

hc	$90^{\circ}-40^{\circ} 20,1^{\prime}$	$49^{\circ} 39,9^{\prime}$

\mathbf{A}	$3,09 \mathrm{~S}$	
\mathbf{B}	0,26 S	
\mathbf{C}	$3,35 \mathrm{~S}$	
$\mathbf{Z n}$	20 SE	E because LHA $180<$ LHA <360

$\mathbf{h m}$	$49^{\circ} 27,6^{\prime}$
\mathbf{i}	$2,0^{\prime}$
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$15,2^{\prime}$
$\mathbf{h v}$	$49^{\circ} 41,7^{\prime}$

$\Delta \mathbf{h}$	hc-hm	$49^{\circ} 39,9^{\prime}-49^{\circ} 41,7^{\prime}=-1,8^{\prime}$ (to)

Fourth position at Meridional passage

Mer. Pass.	11 h 50 m 00 s
ε	10 m 22 s
Culmination at $0^{\circ} \mathrm{W}$	12 h 00 m 22 s
Arc to time of $15^{\circ} 26,4 \mathrm{~W}$	01 h 01 m 46 s
Culmination time	13 h 02 m 08 s

δ	$03^{\circ} 20,3^{\prime} \mathrm{S}$
$\mathrm{d}=1,0$	$0,0^{\prime}$
δ	$03^{\circ} 20,3^{\prime} \mathrm{S}$
l	$35^{\circ} 06,3^{\prime} \mathrm{N}$
$\zeta=\|1-\delta\|$	$38^{\circ} 26,6^{\prime}$
$\mathrm{hc}=90^{\circ}-\zeta$	$51^{\circ} 33,4^{\prime}$

$\Delta \mathrm{h}$	$\mathrm{hc}-\mathrm{hv}$	$51^{\circ} 33,40^{\prime}-51^{\circ} 34,9^{\prime}=-1,5^{\prime}$ (to)

Plotting the position

The figure is not to scale
The correction to apply: $1,8 \mathrm{~S} ; 2,2 \mathrm{E}$
$35^{\circ} 06,3^{\prime}-1,8^{\prime}=35^{\circ} 4,5^{\prime}$
$15^{\circ} 26,9^{\prime}-2,2^{\prime}=15^{\circ} 24,7$
$35^{\circ} 04,5^{\prime} \mathrm{N}$
$15^{\circ} 24,7^{\prime}$ W

Comment:

From the final position P_{4} draw a line for each obtained $\Delta \mathrm{h}$ and Zn at an angle Zn . Terminate it with an arrow. If $\Delta \mathrm{h}$ is "towards" then draw a perpendicular at a distance $\Delta \mathrm{h}$ in the direction of the arrow.

The scale you choose for Δh is the scale with which you must measure Dep and Δl on the plot.

Example:

You draw a $\Delta \mathrm{h}$ of 2^{\prime} at a distance of 1 cm and then you measure a Dep of $0,9 \mathrm{~cm}$ and a Δl of $1,2 \mathrm{~cm}$ then your Dep is $1,8^{\prime}$ and your Δl is $2,4^{\prime}$.

Construct $\Delta \mathrm{g}$

Construct a right angled triangle with base equal to Dep and angle lm, the hypotenuse then is $\Delta \mathrm{g}$.

This could also be done with the traverse tables however this is less accurate.

PROBLEM 2

On the tenth of July 2001 a boat is steering a course of 60° at a speed of 5 knots.
Her estimated position at 10 am deck time is $19^{\circ} 56^{\prime} \mathrm{S} ; 60^{\circ} 07,0^{\prime} \mathrm{E}$.
The sextant was hold at 3 m above the waterline. The chronometer is running 3 s too fast. The deck time is directly derived from the chronometer time. The sextant has an index error of -5 minutes.

The following altitudes of the sun were noted at the respective deck times :

10hoomoos	$37^{\circ} 53,1^{\prime}$
11hoom298	$44^{\circ} 55,2^{\prime}$
Meridionalpassage	$47^{\circ} 42,7^{\prime}$

Determine the position of the boat at meridional passage.

Summarised data

DATE	Time Zone	Dip	Rv	speed	c	\mathbf{i}	$\mathbf{l}_{\mathbf{1}}$	$\mathbf{g}_{\mathbf{1}}$
$10 / 07 / 2001$	GMT +4	3 m	60°	5 kn	+3 s	-5	$19^{\circ} 56,0^{\prime} \mathrm{S}$	$60^{\circ} 07,0^{\prime} \mathrm{E}$

Observation at Local Time	Measured height
10 h 00 m 00 s	$37^{\circ} 53,1^{\prime}$
11 h 00 m 29 s	$44^{\circ} 55,2^{\prime}$
Meridional pass. $=+/-12 \mathrm{~h} 00$	$47^{\circ} 43,8^{\prime}$

Local Time	UTC	UTC + correction (+3s)
10 h 00 m 00 s	6 h 00 m 00 s	6 h 00 m 03 s
11 h 00 m 29 s	7 h 00 m 29 s	7 h 00 m 32 s

Comment

According to the initial position the navigation zone is around Mauritius.
Its time zone is GMT+4.

Entrance in table		
Distance	$\mathbf{R v}$	$\mathbf{l m}$
5 M	60°	20°

Results from table		
$\Delta \mathbf{l}$	Dep	$\Delta \mathbf{g}$
$2,5^{\prime}(-)$	$4,3^{\prime}$	$4,6^{\prime}(+)$

Position	Latitude	Longitude	UTC
P1	$19^{\circ} 56,0^{\prime} \mathrm{S}$	$60^{\circ} 07,0^{\prime} \mathrm{E}$	6 h 00 m 03 s
P2	$19^{\circ} 53,5^{\prime} \mathrm{S}$	$60^{\circ} 11,6^{\prime} \mathrm{E}$	7 h 00 m 32 s
P3	$19^{\circ} 51,0^{\prime} \mathrm{S}$	$60^{\circ} 16,2^{\prime} \mathrm{E}$	M.P.

Sketch

We see on the figure that the latitude is decreasing and the longitude increasing.

Determine the basic parameters

GHA \odot	Increments	GHA \odot	UTC
$268^{\circ} 40,2^{\prime}$	$0,8^{\prime}$	$268^{\circ} 41,0^{\prime}$	6 h 00 m 03 s
$283^{\circ} 40,1^{\prime}$	$8,0^{\prime}$	$283^{\circ} 48,0^{\prime}$	7 h 00 m 32 s
GHA \odot	$\mathbf{g}(\mathbf{E})^{\prime}=+$	LHA	UTC
$268^{\circ} 41,0^{\prime}$	$60^{\circ} 07,0^{\prime}$	$328^{\circ} 48,0^{\prime}$	6 h 00 m 03 s
$283^{\circ} 48,0^{\prime}$	$60^{\circ} 11,6^{\prime}$	$343^{\circ} 59,6^{\prime}$	7 h 00 m 32 s

δ	Increment d=0,3	δ	UTC
$22^{\circ} 13,3^{\prime} \mathrm{N}$	$0,0^{\prime}$	$22^{\circ} 13,3^{\prime} \mathrm{N}$	$6 h 00 \mathrm{~m} 03 \mathrm{~s}$
$22^{\circ} 12,9^{\prime} \mathrm{N}$	$0,0^{\prime}$	$22^{\circ} 12,9^{\prime} \mathrm{N}$	7 h 00 m 32 s

The basic parameters

\mathbf{l}	δ	LHA
$19^{\circ} 56,0^{\prime} \mathrm{S}$	$22^{\circ} 13,3^{\prime} \mathrm{N}$	$328^{\circ} 48,0^{\prime}$
$19^{\circ} 53,5^{\prime} \mathrm{S}$	$22^{\circ} 12,9^{\prime} \mathrm{N}$	$343^{\circ} 59,6^{\prime}$

First Position

$\log \cos \quad 19^{\circ} 56,0^{\prime}$	$\underline{\mathbf{1}}, 97317$
$\log \cos \quad 22^{\circ} 13,3^{\prime}$	$\underline{\mathbf{1}}, 96648$
\log hav $328^{\circ} 48,0^{\prime}$	$\underline{\mathbf{2}}, 85925$
\log hav θ	$\underline{\mathbf{2}}, 79890$

l	$19^{\circ} 56,0^{\prime}$
δ	$22^{\circ} 13,3^{\prime}$
$1-\delta$	$42^{\circ} 09,3^{\prime}$
hav $(l-\delta)$	0,12933

hav θ	0,06293
hav(l- $\delta)$	0,12933
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,19226

hc	$90^{\circ}-52^{\circ} 00,8^{\prime}$	$37^{\circ} 59,2^{\prime}$

\mathbf{A}	$0,60 \mathrm{~N}$	
\mathbf{B}	$0,78 \mathrm{~N}$	
\mathbf{C}	$1,38 \mathrm{~N}$	
$\mathbf{Z n}$	$37,6^{\circ} \mathrm{NE}$	E because $0^{\circ}<\mathrm{LHA}<180^{\circ}$

$\mathbf{h m}$	$37^{\circ} 53,1^{\prime}$
\mathbf{i}	-5^{\prime}
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$+14,8^{\prime}$
$\mathbf{h v}$	$37^{\circ} 59,8^{\prime}$

$\Delta \mathbf{h}$	hc-hm	$37^{\circ} 59,2^{\prime}-37^{\circ} 59,8^{\prime}=-0,6$ towards

Second Position

$\log \cos \quad 19^{\circ} 53,5^{\prime}$	$\underline{\mathbf{1}}, 97328$
$\log \cos 22^{\circ} 12,9^{\prime}$	$\underline{\mathbf{1}}, 96650$
\log hav $343^{\circ} 59,6^{\prime}$	$\underline{\mathbf{2}}, 28747$
\log hav θ	$\underline{\underline{2}, 22725}$

l	$19^{\circ} 53,5^{\prime}$
δ	$22^{\circ} 12,9^{\prime}$
$\mathrm{l}-\delta$	$42^{\circ} 06,4^{\prime}$
hav $(\mathrm{l}-\delta)$	0,12905

hav θ	0,01687
hav $(1-\delta)$	0,12905
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,14592

\mathbf{A}	$1,27 \mathrm{~N}$	
\mathbf{B}	$1,48 \mathrm{~N}$	
\mathbf{C}	$2,75 \mathrm{~N}$	
$\mathbf{Z n}$	$21,2 \mathrm{NE}$	

$\mathbf{h m}$	$44^{\circ} 55,2^{\prime}$
\mathbf{i}	-5^{\prime}
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$+15,0^{\prime}$
$\mathbf{h v}$	$45^{\circ} 2,1^{\prime}$

$\Delta \mathbf{h}$	$\mathrm{hc}-\mathrm{hm}$	$45^{\circ} 5,1-45^{\circ} 2,1^{\prime}=3,0$ away

Third position at Meridional passage

Mer. Pass.	12 h 05 m 00 s
ε	-00 h 05 m 21 s
Culmination at $0^{\circ} \mathrm{W}$	11 h 59 m 39 s
Arc to time of $60^{\circ} 12,6^{\prime} \mathrm{E}$	-4 h 01 m 04 s
Culmination time UTC	7 h 58 m 35

δ	$22^{\circ} 12,9^{\prime}$
$\mathrm{d}=0,3$	$-0,3^{\prime}$
δ	$22^{\circ} 12,6^{\prime}$
l	$+19^{\circ} 51,0^{\prime}$
$\zeta=\|l-\delta\|$	$42^{\circ} 03,6^{\prime}$
hc $=90^{\circ}-\zeta$	$47^{\circ} 56,4^{\prime}$

$\mathbf{h m}$	$47^{\circ} 42,7^{\prime}$
\mathbf{i}	-5^{\prime}
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$15,1^{\prime}$
$\mathbf{h v}$	$47^{\circ} 49,7^{\prime}$

$\Delta \mathrm{h}$	hc-hv	$47^{\circ} 56,4^{\prime}-47^{\circ} 49,7^{\prime}=6,7^{\prime}$ away

Plot

Position at Meridional passage :
The correction to apply: $7^{\prime} \mathrm{S} ; 10,9^{\prime} \mathrm{E}$

$$
\begin{aligned}
& 19^{\circ} 51,0^{\prime}+7,0^{\prime}=35^{\circ} 04,5^{\prime} \\
& 60^{\circ} 16,2^{\prime}+10,9^{\prime}=60^{\circ} 27,1^{\prime}
\end{aligned}
$$

PROBLEM3

On 8 March 2001 a boat is steering a course of 70° at a speed of 1,8 knots.
Her estimated position at 10 h 30 UTC is $35^{\circ} 18^{\prime} \mathrm{N} ; 15^{\circ} 15^{\circ} 07,0^{\prime} \mathrm{E}$. We assume that this estimated position is quite exact.

The sextant was hold at 3 m above the waterline. The chronometer is exactly matched on UTC. The sextant has no index error.

The following altitudes of the sun were noted at the UTC :

10h30m00s	$34^{\circ} 39,3^{\prime}$
Cufmination height	$49^{\circ} 44,8^{\prime}$

Determine the position at culmination time with the Pagel method..

Summarised data

DATE	Time Zone	Dip	Rv	speed	c	\mathbf{i}	$\mathbf{l}_{\mathbf{1}}$	\mathbf{g}_{1}
$8 / 03 / 2001$	GMT	3 m	70°	$1,8 \mathrm{kn}$	0 s	0^{\prime}	$35^{\circ} 18,0^{\prime} \mathrm{N}$	$15^{\circ} 15^{\prime} \mathrm{W}$

Observation at UTC	Measured height
10 h 30 m 00 s	$34^{\circ} 39,3^{\prime}$
At $\pm 13 \mathrm{~h} 00$	$49^{\circ} 44,8^{\prime}$

Comment

According to the initial position the navigation zone is around Madeira which is keeping Greenwich Meantime. The Pagel method can be used only if the estimated position is quite close to the real position. These positions are considered as being close when their respective azimuths are nearly equal.

Basic parameters for estimated position Pe at 10h30

GHA \odot	Increments	GHA \odot	UTC				
$327^{\circ} 18,4^{\prime}$	$7^{\circ} 30^{\prime}$	$334^{\circ} 48,4^{\prime}$	10 h 30 m 00 s		GHA \odot	$\mathbf{g}(\mathbf{W})=-$	LHA
:---:	:---:	:---:					
$334^{\circ} 48,4^{\prime}$	$15^{\circ} 15,0^{\prime}$	$319^{\circ} 33,4^{\prime}$					
UTC							

δ	Increment d=1,0	δ	UTC
$4^{\circ} 47,1^{\prime} \mathrm{S}$	$-0,5^{\prime}$	$4^{\circ} 46,6^{\prime} \mathrm{S}$	10 h 30 m 00 s

\mathbf{l}
$35^{\circ} 18,0^{\prime} \mathrm{N}$

Hc and Zn at 10 h 30

$\log \cos \quad 35^{\circ} 18,0^{\prime}$	$\underline{\mathbf{1}}, 91176$
$\log \cos \quad 4^{\circ} 46,6^{\prime}$	$\underline{\mathbf{1}}, 98849$
\log hav $319^{\circ} 33,4^{\prime}$	$\underline{\underline{2}}, 07728$
\log hav θ	$\underline{,}, 98753$

l	$35^{\circ} 18,0^{\prime}$
δ	$4{ }^{\circ} 46,6^{\prime}$
$\mathrm{l}-\delta$	$40^{\circ} 04,6^{\prime}$
hav $(\mathrm{l}-\delta)$	0,11741

hav θ	0,09717
hav(l- $\delta)$	0,11741
hav $\left(90^{\circ}-\mathrm{h}\right)$	0,21458

hc	$90^{\circ}-55^{\circ} 11,4^{\prime}$	$34^{\circ} 48,6^{\prime}$

\mathbf{A}	$0,82 \mathrm{~S}$	
\mathbf{B}	$0,12 \mathrm{~S}$	
\mathbf{C}	$0,94 \mathrm{~S}$	
$\mathbf{Z n}$	52° SE	E because LHA $180<$ LHA <360

hm	$34^{\circ} 39,3^{\prime}$
\mathbf{i}	0^{\prime}
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$14,7^{\prime}$
hv	$34^{\circ} 50,9^{\prime}$

$\Delta \mathbf{h}$	hc-hm	$34^{\circ} 48,6^{\prime}-34^{\circ} 50,9^{\prime}=-2,3$ towards

Comment

This is a classic Hc, Zn and $\Delta \mathrm{h}$ computation.

Plot the position

On the plot we find Pa 1 and Pa 2

Position	Latitude	Longitude	UTC
Pe	$35^{\circ} 18,0^{\prime} \mathrm{N}$	$15^{\circ} 15,0^{\prime} \mathrm{W}$	10 h 30 m 00 s
Pa 1	$35^{\circ} 18,0^{\prime} \mathrm{N}$	$15^{\circ} 11,4^{\prime} \mathrm{W}$	10 h 30 m 00 s
Pa 2	$35^{\circ} 19,5^{\prime} \mathrm{N}$	$15^{\circ} 06,2^{\prime} \mathrm{W}$	M.P.

The Pagel Method

Construct a middle latitude chart and plot the estimated position Pe . With the found Azimuth and intercept draw the fix of Pe. The adjusted Position Pa1 lays on the intersection between the parallel of Pe and its fix. The Position Pa 2 is obtained by transferring the fix over a distance of $4,5 \mathrm{nM}$ under 70°. (as the distance covered in 2,5 hours is : $1,8 \times 2,5=4,5$). All we do in fact is adapting the longitude of our estimated position to the longitude of Pa1. The intercept remains the same because we remain on the fix as the fix is the collection of points having the same intercept at that moment, but different Azimuths. However the change in Azimuth is a slow value.

Culmination Height of Pa2

Mer. Pass.	12 h 11 m 00 s
ε	10 m 45 s
Culmination at $0^{\circ} \mathrm{W}$	12 h 00 m 15 s
Arc to time of $15^{\circ} 6,2^{\prime} \mathrm{W}$	1 h 00 m 24 s
Culmination time UTC	13 h 00 m 39 s

δ	$-4^{\circ} 44,1^{\prime}$
$\mathrm{d}=1,0$	0^{\prime}
δ	$4^{\circ} 44,1$
l	$35^{\circ} 19,5^{\prime}$
$\zeta=\|l-\delta\|$	$40^{\circ} 03,6^{\prime}$

$\mathbf{h m}$	$49^{\circ} 44,8^{\prime}$
\mathbf{i}	0^{\prime}
$\mathbf{d i p}$	$-3,1^{\prime}$
\mathbf{n}	$16,7^{\prime}$
$\mathbf{h v}$	$49^{\circ} 58,4^{\prime}$

$\mathrm{hc}=90^{\circ}-\zeta$	$49^{\circ} 56,4^{\prime}$

$\Delta \mathrm{h} \quad$ hc-hv $\quad 49^{\circ} 56,4^{\prime}-49^{\circ} 58,4^{\prime}=2,0^{\prime}$ towards

We find by computation that $\Delta \mathrm{l}=2^{\prime}$ towards and $\Delta \mathrm{g}=\Delta \mathrm{lx} \mathrm{C}=2 \times 0,92=1,88^{\prime}$
C is the parameter from in the ABC tables for Zn computation.
According to the plot $\Delta \mathrm{g}$ has to be applied westwards.
Which gives : $35^{\circ} 19,5^{\prime}-2,0^{\prime}=35^{\circ} 17,5^{\prime} \mathrm{N}$ and $15^{\circ} 4,2 \mathrm{~W}+1,88^{\prime}=15^{\circ} 6,1^{\prime}$

$35^{\circ} 17,5^{\prime} \mathrm{N}$
 $15^{\circ} 04,2 W^{\prime}$

Verification

Position	Latitude	Longitude	UTC
Preal1	$35^{\circ} 16,0^{\prime} \mathrm{N}$	$15^{\circ} 13,3^{\prime} \mathrm{W}$	10 h 30 m 00 s
Preal2	$35^{\circ} 17,5^{\prime} \mathrm{N}$	$15^{\circ} 08,1^{\prime} \mathrm{W}$	M.P.

By running back Preal2 we find our real initial position Preal1 at 10h30. We can verify that Preal1 is laying on the fix of 10 h 30 .

The factor C : on the figure above is a detail of the plot we see that $\mathrm{Dep}=\Delta \mathrm{l} \times \operatorname{cotg} \mathrm{Zn}$ As $\Delta \mathrm{g}=\mathrm{Dep} \mathrm{x}$ sec l then $\Delta \mathrm{g}=\Delta \mathrm{l} \mathrm{x} \operatorname{cotg} \mathrm{Zn} \sec \mathrm{l}=\mathrm{Cx} \Delta \mathrm{l}$. As $\mathrm{C}=$ See definition of C in formularies.

PROBLEM4

Distance and Course Computation with Nories Table

Belem(Brazi)	$01^{\circ} 27^{\prime} \mathrm{S}$
	$48^{\circ} 30^{\prime} \mathrm{W}$

Brest(France)	$48^{\circ} 23^{\prime} \mathcal{N}$
	$04^{\circ} 29^{\prime} \mathcal{W}$

ORTHODROMIC TRACK

11	$48^{\circ} 23^{\prime}$
12	$+01^{\circ} 27^{\prime}$
$\Delta 1$	$49^{\circ} 50^{\prime}$

$\log \cos 01^{\circ} 27^{\prime}$	$\underline{1}, 99986$
$\log \cos 48^{\circ} 23^{\prime}$	$\underline{1}, 82226$
$\log \operatorname{hav} 44^{\circ} 01^{\prime}$	$\underline{1}, 14746$
\log hav θ	$\underline{2}, 96958$

g 2	$48^{\circ} 30^{\prime}$
g 1	$-04^{\circ} 29^{\prime}$
$\Delta \mathrm{g}$	$44^{\circ} 01^{\prime}$

Hav θ	0,09323
Hav $49^{\circ} 50^{\prime}$	0,17749
Hav M	0,27072

M	$62^{\circ} 43^{\prime}$
M	$62 \times 60+43$
\mathbf{M} in nM	3763 nM

LOXODROMIC TRACK

$\Delta \mathrm{l}$	$49 \times 60+50$	2990 nM
$\Delta \mathrm{g}$	$44 \times 60+1$	2641 nM

lc1	86,42
lc2	$+3308,52$
$\Delta \mathrm{lc}$	3394,94

$\log \Delta \mathrm{lc}$	3,53083

colog $\Delta \mathrm{lc}$	$-3,53083$

Integer 4	4,00000
colog $\Delta \mathrm{lc}$	$-3,53083$
colog $\Delta \mathrm{lc}$	$\underline{4}, 46917$

$\log \Delta \mathrm{g}$	3,42177
$\operatorname{colog} \Delta \mathrm{lc}$	$\underline{4}, 46917$
$\log \tan \mathrm{Rv}$	$\underline{1}, 89094$

Course from Belem to Brest $\mathbf{R v}$		$37^{\circ} 53^{\prime}$	$+180^{\circ}$	$\mathbf{R v}$

$\log \sec \mathrm{Rv}$	0,10278
$\log \Delta 1$	3,47567
$\log \mathrm{M}$	3,57845

\mathbf{M}	3788 nM

PROBLEM 5

Date: $6^{\text {th }}$ july of 2001
Speed: immobile $\quad \operatorname{dip}=2,8 \mathrm{~m} i=0,0^{\prime} \mathrm{c}=0 \mathrm{~s}$
Position: $\quad 42^{\circ} 15,1^{\prime} \mathrm{N}$ zone : western Mediterranean $6^{\circ} 25,0^{\prime} \mathrm{E}$

Determine the position of the boat

Data Sample from the Nautical Almanach

Lat.	Sunset	Twilight	
		Civil	Naut.
\bigcirc	h m	h m	h m
N 72	\square	\square	\square
N 70	\square	\square	\square
68	\square	\square	\square
66	2308	//1/	/1/1
64	2214	/1/1	/1/1
62	2142	1/1/	/1/1
60	2119	2248	/1/1
N 58	2100	2210	/1/1
56	2045	2144	/1/1
54	2032	2124	2254
52	2020	2107	2219
50	2010	2053	2155
45	1949	$20 \quad 25$	2113
N 40	1931	$20 \quad 04$	2045
35	1917	1946	2023
30	1905	1932	2005

Compute Civil twilight (CVT)

	$20 h 04 \mathrm{m00s}$
Data from table	$+09 \mathrm{m00s}$
At $0^{\circ} \mathrm{E}$	$\mathbf{2 0 h 1 3 m 0 0 s}$
Arc to time $\left(6^{\circ} 25^{\prime}\right)$	-25 m 40 s
UTC	$\mathbf{1 9 h 4 7 m 2 0 s}$
shift	$+2 h 00 \mathrm{m00s}$
CVT at LMT	$\mathbf{2 1 h 3 4 m 4 0 s}$

At approximately this decktime we will measure the selected

Compute LHA γ at local civil twilight

	$209^{\circ} 49,3^{\prime}$
I $(34 \mathrm{~m})$	$8^{\circ} 40,0^{\prime}$
GHA $\gamma(19 \mathrm{~h} 34 \mathrm{~m})$	$\mathbf{2 1 8}^{\circ} \mathbf{2 9 , \mathbf { 3 } ^ { \prime }}$
$+\mathrm{g}(\mathrm{E})$	$6^{\circ} 25,0^{\prime}$
LHA $\gamma(19 \mathrm{~h} 34 \mathrm{~m})$	$\mathbf{2 2 4}^{\circ} \mathbf{5 4 , \mathbf { 3 } ^ { \prime }}$

Sample from HO249 table

LAT $42^{\circ} \mathrm{N}$

$\underset{\sim}{\text { LHA }}$	$\mathrm{Hc} \quad \mathrm{Zn}$	Hc	Zn										
		VEGA		Rasalhague		ANTARES		ARCTURUS		REGULUS		Dubhe	
220	$28 \quad 10 \quad 053$	4539	073	4200	115	1701	154	6635	194	2422	264	5246	321
221	2845053	4622	074	4240	118	1720	156	6623	197	2338	285	5218	321
228	2921054	4705	074	4320	117	1738	156	6810	199	2254	208	5150	321
293	2987054	4748	075	4400	118	1756	157	6554	201	2200	268	5121	320
224	3034055	4831	075	4439	119	1813	158	6537	203	2125	267	5053	320
225	$\begin{array}{\|l\|l\|} \hline \text { DENEB } \\ 34 & 10 \quad 055 \end{array}$	ALTAIR 1843095		Rasalhague		ANTARES $1829 \quad 150$		ARCTURUS		Denebola 40 43 1		Dubhe	

Determine LHA γ for each star at observation time

Deneb (1)	Arcturus (2)	Dubhe (3)
19h30	19h32m3s	19h34m59s
GHA $\boldsymbol{\gamma} \quad 209^{\circ} 49,3^{\prime}$	209 ${ }^{\circ} 49,3^{\prime}$	209 ${ }^{\circ} 49,3^{\prime}$
I $7^{\circ} 31,2^{\prime}$	$8^{\circ} 02,1^{\prime}$	$8^{\circ} 44,7 \prime$
$\mathbf{2 1 7}^{\circ} \mathbf{2 0 , 5}{ }^{\prime}$	$\mathbf{2 1 7}{ }^{\circ} 51, \mathbf{4}^{\prime}$	$\mathbf{2 1 8}{ }^{\circ} \mathbf{3 4 ,} 0^{\prime}$
g(E) $6^{\circ} 39,5^{\prime}$	$6^{\circ} 08,6^{\prime}$	$6^{\circ} 26,0^{\prime}$
LHA $\gamma \quad 224{ }^{\circ}$	$224{ }^{\circ}$	$225{ }^{\circ}$

With LHA γ as entry we find the HO249 table:

Correct the measured hights with dip and refraction coeff.

$\mathrm{Hm}=30^{\circ} 40,6^{\prime}$	$\mathrm{Hm}=65^{\circ} 19,5^{\prime}$	$\mathrm{Hm}=50^{\circ} 31,6^{\prime}$		
$\mathrm{C} 1=-1,6^{\prime}$	$\mathrm{C} 1=-0,4^{\prime}$	$\mathrm{C} 1=-0,8^{\prime}$		Sextant heights
:---				
$\mathrm{C} 2=-3,0^{\prime}$				
$\mathrm{C} 2=-3,0^{\prime}$				

Compute the intercepts

Hv	$30^{\circ} 36,0^{\prime}$	Hv	$65^{\circ} 19,5^{\prime}$	Hv	$50^{\circ} 31,6^{\prime}$
Hc	$30^{\circ} 34,0^{\prime}$	Hc	$65^{\circ} 37,0^{\prime}$	Hc	$50^{\circ} 25,0^{\prime}$
$\Delta \mathbf{h 1}$	$\mathbf{2 , 0}$	$\Delta \mathbf{h 2}$	$\mathbf{- 1 7 , 5}^{\prime}$	Δ h3	$\mathbf{6 0 , 6}^{\prime}$

Plot

Plot respective fixes in the three estimated positions $6^{\circ} 39,5^{\prime} \mathrm{E}, 6^{\circ} 08,6^{\prime} \mathrm{E}, 6^{\circ} 26,0^{\prime} \mathrm{E}$ all at $42^{\circ} \mathrm{N}$

Transfer the position triangle over $2,2 \mathrm{M}$ at 301° in order to correct the error due to nutation of the earth's axis.

CORRECTION FOR PRECESSION AND NUTATION

$\underset{\mathbf{r}}{\text { LHA }}$	North latitudes						0°		South latitudes						$\underset{\mathbf{r}}{\text { LHA }}$
	N 80°	N 70 ${ }^{\circ}$	N $60{ }^{\circ}$	N 50°	N 40 ${ }^{\circ}$	N 20°			S 20°	S 40°	S $50{ }^{\circ}$	S 60°	S 70°	S 80°	
							200								
-		, -	, -	, -	, -	-			, -	, -	,	, -	, -	, 0	-
0	1.4201	1.6218	1.9229	2.3236	2.6240	3.0245		247	3.1245	2.6241	2.3236	2.0229	1.6219	1.4203	0
30	1.6225	1.9235	2.3241	2.6245	2.9247	3.2249		249	2.8246	2.2239	1.8232	1.5220	1.2201	1.1175	30
60	1.7247	2.1252	$2.5 \cdot 255$	2.8256	3.0257	3.2258		257	2.5255	1.7247	1.2238	0.8218	0.7178	0.9139	60
90	1.8269	2.2269	2.6269	2.9270	3.1270	3.2270	2.9	270	2.3269	1.4269	0.9268	0.4266	0.2097	0.7092	90
120	1.7291	2.2287	2.5284	2.8283	3.0282	3.2281	3.0	282	2.5285	1.7292	1.2301	0.8321	0.6004	0.9044	120
150	1.6313	2.0304	2.3298	2.6295	2.9292	3.2290			2.8293	2.1301	1.8308	1.4321	1.2341	1.1007	150
180	1.4337	1.6321	2.0311	2.3304	2.6299	3.1295		293	3.0295	2.6300	2.3304	1.9311	1.6322	1.4339	180
210	1.1005	1.2339	1.5320	1.8308	2.2301	2.8294		291	3.2291	2.9293	2.6295	2.3299	1.9305	1.6315	210°
240	0.9041	0.7002	0.8322	1.2302	1.7293	2.5285	3.0	283	3.2282	3.0283	2.8284	2.5285	2.1288	1.7293	240
270	0.7088	0.2083	0.4274	0.9272	1.4271	2.3271			3.2270	3.1270	2.9270	2.6271	2.2271	1.8271	270
300	0.9136	0.6176	0.8219	1.2239	1.7248	2.5255		258	3.2259	3.0258	2.8257	2.5256	2.2253	1.7249	300
330	1.1173	1.2199	14219	1.8232	2.1239	2.8247	3.1	250	3.2250	2.9248	2.6245	2.3242	$2.0 \quad 236$	1.6227	330
360	1.4201	1.6218	1.9229	2.3236	2.6240	3.0245	3.2	247	3.1245	2.6241	2.3236	2.0229	1.6219	1.4203	360

